All posts about
Computational design

Human-centered design for machine learning

Always keep the human in mind, even when the mind is artificial.

“Machine learning (ML) is the science of helping computers discover patterns and relationships in data instead of being manually programmed. It’s a powerful tool for creating personalised and dynamic experiences, and it’s already driving everything from Netflix recommendations to autonomous cars. But as more and more experiences are built with ML, it’s clear that UX’ers still have a lot to learn about how to make users feel in control of the technology, and not the other way round.”

Josh Lovejoy and Jess Holbrook ~ IoT for all

Computational design

Thinking, designing and doing with, by and for computers.

“Computational thinking refers to a deliberative process that finds a computational solution for a concern. Computational doing refers to use of computation and computational tools to address concerns. Computational design refers to creating new computational tools and methods that are adopted by the members of a community to address their concerns. Unfortunately, the definitions of both “thinking” and “doing” are fuzzy and have allowed misconceptions about the nature of algorithms. Fortunately, it is possible to eliminate the fuzziness in the definitions by focusing on computational design, which is at the intersection between thinking and doing. Computational design is what we are really after and would be a good substitute for computational thinking and doing. (…) Computational design is where the power of the computing revolution is showing up. Computational design is what we are really after and would be a good substitute for computational thinking and doing.”

Peter J. Denning a.k.a. /peter-denning ~ Ubiquity (August 2017)

Human-centered machine learning: 7 steps to stay focused on the user when designing with ML

New technology waves are ahead of us.

“Machine learning is the science of helping computers discover patterns and relationships in data instead of being manually programmed. It’s a powerful tool for creating personalized and dynamic experiences, and it’s already driving everything from Netflix recommendations to autonomous cars. But as more and more experiences are built with ML, it’s clear that UXers still have a lot to learn about how to make users feel in control of the technology, and not the other way round.”

Jess Holbrook a.k.a. /jessholbrook courtesy of O’Reilly Design

UX design for big data applications

Re-inventing UX design for new technology waves.

“Through machine learning and artificial intelligence, organizations can use big data to predict our next actions – sometimes even better than we can predict them ourselves. The implications of big data are enormous—enabling us to view suggested products while on a retailer’s Web site, receive recommendations to connect with people who we might know on social-media sites, and benefit from smart IoT devices that gather data from us and those who are similar to us, then act accordingly. Organizations in the healthcare and financial arenas use big-data systems to spot potential adverse events, while also pinpointing scenarios that can bring increased profits and positive outcomes.”

Janet M. Six a.k.a. /janetmsix ~ UXmatters

Design in the era of the algorithm

Perfect text for those involved in circle three of Maeda: Computational Design.

“The design and presentation of data is just as important as the underlying algorithm. Algorithmic interfaces are a huge part of our future, and getting their design right is critical—and very, very hard to do. My work has begun to turn to the responsible and humane presentation of data-driven interfaces. And I suspect that yours will, too, in very short order. While constructing these machine learning models is indeed heavy-duty data science, using them is not. Tons of these machine learning models are available to all of us here to build upon right now.”

Josh Clark a.k.a. /joshclark | @bigmediumjosh ~ big medium courtesy of @gnat

Applications of machine learning for designers

Moving ‘Lick’ forward into the design world.

“As a designer, you will be facing more demands and opportunities to work with digital systems that embody machine learning. To have your say about how best to use it, you need a good understanding about its applications and related design patterns. This article illustrates the power of machine learning through the applications of detection, prediction and generation. It gives six reasons why machine learning makes products and services better and introduces four design patterns relevant to such applications. To help you get started, I have included two non-technical questions that will help with assessing whether your task is ready to be learned by a machine.”

Lassi Liikkanen a.k.a. /lassial | @lassial ~ Smashing Magazine

Ten principles for design in the age of AI

A little more on ethics would help.

“We’re on the cusp of a new era of design. Beyond the two-dimensional focus on graphics and the three-dimensional focus on products, we’re now in an era where designers are increasingly focusing on time and space, guided by technological advances in artificial intelligence, robotics, and smart environments.”

Katharine Schwab a.k.a. /katharineschwab | @kschwabable ~ FastCoDesign

AI and the future of design: What will the designer of 2025 look like?

We’re getting some clear messages on this topic lately.

“As I began to explore how AI would affect design, I started wondering what advice I would give my daughter and a generation of future designers to help them not only be relevant, but thrive in the future AI world. Here is what I think they should expect and be prepared for in 2025.”

Rob Girling ~ O’Reilly Radar

Algorithm-driven design: How artificial intelligence is changing design

Algos as the augmentation tools for designers.

“I’ve been following the idea of algorithm-driven design for several years now and have collected some practical examples. The tools of the approach can help us to construct a UI, prepare assets and content, and personalize the user experience. The information, though, has always been scarce and hasn’t been systematic. However, in 2016, the technological foundations of these tools became easily accessible, and the design community got interested in algorithms, neural networks and artificial intelligence. Now is the time to rethink the modern role of the designer.”

Yury Vetrov a.k.a. @jvetrau ~ Smashing Magazine

Experience design in the machine learning era

ML eats XD for breakfast, lunch, and diner.

“Traditionally the experience of a digital service follows pre-defined user journeys with clear states and actions. Until recently, it has been the designer’s job to create these linear workflows and transform them into understandable and unobtrusive experiences. This is the story of how that practice is about to change. Over the last 6 months, I have been working in a rather unique position at BBVA Data and Analytics, a center of excellence in financial data analysis. My job is to make the design of user experiences reach a new frontier with the emergence of machine learning techniques. My responsibility — among other things — is to bring a holistic experience design to teams of data scientists and make it an essential part of the lifecycle of algorithmic solutions (e.g. predictive models, recommender systems). In parallel, I perform creative and strategic reviews of experiences that design teams produce (e.g. online banking, online shopping, smart decision making) to steer their evolution into a future of ‘artificial intelligence’. Practically, I boost the partnerships between teams of designers and data scientists to envision desirable and feasible experiences powered by data and algorithms.”

Fabien Girardin a.k.a. /fabiengirardin ~ D&A blog courtesy of puttingpeoplefirst

Manufacturing Magic and Computational Creativity

Magic from the Machine.

“This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers.”

Howard Williams and Peter W. McOwan ~ Frontiers in Psychology

Algorithms as the new material of Design

From code to language: algorithms.

“As experience designers, we rely more on algorithms with every iteration of a Web site or application. As design becomes less about screens and more about augmenting humans with extended capabilities, new ideas, and even, potentially, more emotional awareness, we need algorithms. If we think of experience designers as the creators of the interface between people and technology, it makes sense that we should become more savvy about algorithms.”

Pamela Pavliscak a.k.a. /pamelapavliscak | @paminthelab ~ UXmatters

Artificial intelligence is your health advisor

After digital disruption we’re now moving into computational disruption.

“Artificial Intelligence promises everything from self-driving cars to self-writing newspapers, but AI may be missing its greatest opportunity in healthcare, where AI-driven ‘conversational interfaces’ hold untapped potential to influence the health and wellbeing of billions of people.”

Thomas Sutton a.k.a. /thomasthinks | @thomas_thinks ~ frog Designmind

CreativeAI: On the democratisation & escalation of creativity  (chapter 01)

The blend of creativity, design, and deep understanding of digital technology.

“A primary goal of this research project was to find a set of guiding principles, metaphors and ideas, that inform the development of future theories, experiments, and applications. By combining different domains into one narrative, we formulate a new school, or praxis for creativity: CreativeAI. Its desire is to explore and celebrate creativity. Its goal is to develop systems that raise the human potential. Its belief is that addressing the “what” and “why” is as important as the “how”. Its conviction is that complex ethical questions are not an afterthought, but an opportunity to be creative collectively. Finally, CreativeAI is a question, rather than an answer. Its only demand is more collaboration and creativity. It is an invitation for play!”

Samim Winiger a.k.a. /samimwiniger | @samim & Roelof Pieters a.k.a /roelofpieters | @graphific ~ Medium ~ courtesy of karsalfrink